
Software Estimation

4 CROSSTALK The Journal of Defense Software Engineering June 2002

Research on software cost estimation
started independently in a number of

companies and military organizations that
built large software systems. Formal
research into software cost estimation
became necessary when software applica-
tions and systems software began to go
beyond 100,000-source code statements in
size. This size plateau was reached by sev-
eral organizations in the 1960s.

The main issue that led to formal
research programs for software cost esti-
mation was the difficulty encountered in
completing large software applications on
time and within budget. A secondary issue
was the fact that when deployed, software
applications often contained significant
numbers of bugs or defects. The evolution
of software estimation tools is described in
articles by Boehm [1, 2] and Jones [3](each
of which describes the state-of-the-art
tools at the time of publication). A time-
line of the evolution of software estima-
tion tools is shown in Figure 1.

As of 2002, about 50 commercial soft-
ware estimation tools were marketed in the
United States. The major features of com-
mercial software estimation tools include
the following basic abilities:
• Sizing logic for specifications, source

code, and test cases.
• Phase-level, activity-level, and task-

level estimation.
• Support for both function point met-

rics and the older lines-of-code (LOC)
metrics.

• Support for specialized metrics such as
object-oriented metrics.

• Support for backfiring or conversion
between LOC and function points.

• Support for software reusability of var-
ious artifacts.

• Support for traditional languages such
as COBOL and FORTRAN.

• Support for modern languages such as
Java and Visual Basic.

• Quality and reliability estimation.
Additional features found in some but

not all software estimation tools include
the following:
• Risk and value analysis.
• Estimation templates derived from his-

torical data.
• Links to project management tools

such as Artemis or Microsoft Project.
• Cost and time-to-complete estimates

mixing historical data with projected
data.

• Currency conversions for international
projects.

• Inflation calculations for long-term
projects.

• Estimates keyed to the Software
Engineering Institute’s Capability
Maturity Model® (CMM®).
Modern software cost estimation tools

are now capable of serving a variety of
important project management functions.

However, there are still some topics that
are not yet fully supported even by state-
of-the-art software estimation tools. Some
of the topics that may require manual esti-
mation include the following:
• Conversion and nationalization costs

for international projects.
• Fees for trademark and copyright

searches.
• Acquisition costs for commercial off-

the-shelf packages.
• Deployment costs for enterprise

resource planning applications.
• Litigation expenses for breach of con-

tract if a project is late or over budget.
For ordinary software projects, auto-

mated estimation tools can now predict
more than 95 percent of the associated
effort and cost with fairly good accuracy.
But projects that must be converted for
sale in many countries, or that run on mul-
tiple hardware and software platforms, will
have expenses outside the scope of most
commercial software estimation tools. The
legal expenses are also outside their scope
if a software project is subject to litigation
such as breach of contract or theft of
intellectual property.

A Large Tool Family
The phrase project management tools has been
applied to a large family of tools whose
primary purpose is sophisticated schedul-
ing for projects with hundreds or even
thousands of overlapping and partially
interdependent tasks. These tools are able
to drop down to very detailed task levels
and can even handle the schedules of indi-
vidual workers. A few examples of tools
within the project management class
include Artemis Views, Microsoft Project,
Primavera, and the Project Manager’s
Workbench.

The software cost estimation industry
and the project management tool industry
originated as separate businesses. Project

Software Cost Estimation in 2002©

Capers Jones
Software Productivity Research Inc., Artemis Management Systems

The first automated software cost estimation tools were developed independently by researchers in major corporations and mil-
itary groups in the 1960s. Commercial software cost estimation tools began to be marketed in the 1970s. By 2002, about
50 commercial software cost estimation tools were marketed in the United States and another 25 in Europe. Although stan-
dard projects can now be estimated with fairly good accuracy, there are always new technologies that require improvements in
estimating tools.

© Copyright 2001 by Capers Jones. All Rights Reserved.
® Capability Maturity Model and CMM are registered in the

U.S. Patent and Trademark Office.

1960s 1970s 1980s 1990s 2000s

1960s First software estima-
tion tools developed.

1973 Frank Freiman develops
the PRICE-S software estima-
tion model, the first commer-
cial software estimation tool.
1973 Capers Jones and Dr.
Charles Turk develop IBM
proprietary automated esti-
mation tool.
1973 Allan Albrecht develops
function point metric at IBM.
1979 IBM puts function point
metric in public domain.
1979 Larry Putnam develops
Software Life-Cycle Manage-
ment (SLIM) tool.

1981 Dr. Barry Boehm pub-
lished COCOMO algorithms.
1983 Dr. Howard Rubin devel-
ops ESTIMACS model.
1984 Major revision of function
points becomes basis of to-
day’s standard.
1985 Capers Jones develops
the SPQR/20 estimation tool.
1986 International Function
Point Users Group (IFPUG)
emerges globally.
1986 Allan Albrecht develops
IFPUG certified course for
function point counting.
1986-2000 Huge growth in the
software estimation tool market.

2000 Dr. Barry Boehm
develops COCOMO II.
2002 Approximately 50
commercial software esti-
mation tools are marketed
in the United States and
approximately 25 in
Europe.

Figure 1: Evolution of Software Estimating Tools

June 2002 www.stsc.hill.af.mil 5

Software Cost Estimation in 2002

management tools began appearing
around the 1960s, about 10 years before
software cost estimation tools. Although
the two were originally separate businesses,
they are now starting to join together tech-
nically.

Project management tools did not orig-
inate for software, but rather originated for
handling very complex scheduling situa-
tions where hundreds or even thousands
of tasks needed to be determined and
sequenced, and where dependencies such
as task completion might affect the start of
subsequent tasks.

Project management tools have no
built-in expertise regarding software, as do
software cost estimation tools. For exam-
ple, if you wish to explore the quality and
cost impact of an object-oriented pro-
gramming language such as Smalltalk, a
standard project management tool is not
the right choice. By contrast, many soft-
ware cost estimation tools have built-in
tables of programming languages and
will automatically adjust the estimate
based on which language is selected for
the application.

Although there are scores of software
cost estimation tools on the market, there
are 10 generic features that many software
estimation tools can perform:

Feature 1: Sizing Specifications,
Source Code, and Test Cases
The first step in any software estimate is to
predict the sizes of the deliverables that
must be constructed. Before about 1985,
software cost estimation tools did not
include sizing logic. For these older tools,
the user had to provide size information.
Size data were expressed in LOC for esti-
mation tools developed before the publica-
tion of function point metrics.

After function points became available
in 1978, size could be expressed using
either function points or LOC metrics, and
converted between the two. As of 2001,
sizing is a standard feature in more than 30
commercial software cost estimation tools.

The advent of function point metrics
has eased the burden on software size esti-
mation. Function point totals can be
derived from software requirements long
before any code is written. Once the func-
tion point size of an application is known,
then many artifacts can also be sized.
These include but are not limited to the
following:
1. Specification volumes.
2. Source code volumes.
3. User documentation volumes.
4. Numbers of test cases.
5. Numbers of possible bugs or errors.

Another important sizing aspect is

dealing with the rate at which requirements
creep and hence make projects grow larger
during development. If the function point
totals for an application are measured at
the requirements phase and again at deliv-
ery, the two values can be used to calculate
the monthly rate of growth.

After the requirements are initially
defined, the observed rate of requirements
creep is from 1 percent to more than 3 per-
cent per calendar month during the design
and coding phases. The average rate of
requirements creep is about 2 percent per
month based on analysis of several thou-
sand applications during benchmark and
baseline studies.

Function points are not the only siz-
ing method available, of course. Some
estimation tools also offer templates
derived from common kinds of software
applications. Many estimation tools allow
users to provide their own size data, if
they wish, using either LOC metrics or
function points or both. Refer to Kan [4]

for a discussion of software metrics used
in estimation.

In the United States, the function point
metric by IBM, and now maintained by the
International Function Point Users Group
(IFPUG), is most commonly used for soft-
ware estimates. Version 4.1 of the IFPUG
counting rules is assumed in this article [5].
For a discussion of the accuracy of soft-
ware function point counting, refer to
Kemerer [6].

Feature 2: Selecting Project Activities
Once the initial sizes of various deliver-
ables have been approximated, the next
step is to determine which specific activi-
ties will be carried out for the project being
estimated. Activity selection is one of the
major areas where software cost estimation
tools excel. There are some 25 common
activities that might be performed for a
software project, but only large military
applications will normally perform all 25.
For a discussion of activities and how they

Activities Performed
Web MIS System Military

Projects Projects Projects Projects

01 Requirements 3% 7.5% 4% 7%
02 Prototyping 10% 2% 2% 2%
03 Architecture 0.5% 1.5% 1%
04 Project plans 1% 2% 1%
05 Initial design 8% 7% 6%
06 Detail design 7% 6% 7%
07 Design reviews 2.5% 1%
08 Coding 25% 20% 20% 16%
09 Reuse acquisition 5% 2% 2%
10 Package purchase 1% 1% 1%
11 Code inspections 1.5% 1%
12 Ind. Verif. & Valid. 1%
13 Configuration mgt. 3% 1% 1.5%
14 Formal integration 2% 2% 1.5%
15 User documentation 5% 7% 10% 10%
16 Unit testing 25% 4% 5% 3%
17 Function testing 17% 6% 5% 5%
18 Integration testing 5% 5% 5%
19 System testing 7% 5% 6%
20 Field testing 1.5% 3%
21 Acceptance testing 5% 1% 3%
22 Independent testing 1%
23 Quality assurance 2% 1%
24 Installation/training 2% 1% 1%
25 Project management 10% 12% 12% 13%

Total 100% 100% 100% 100%

Activities Performed 8 18 23 25
Table 1: Software Activity Variations – Percentage of Staff Effort by Activity (Assumes applica-
tions of about 1,000 function points in size or larger)

Software Estimation

6 CROSSTALK The Journal of Defense Software Engineering June 2002

vary, see Jones [7]. Table 1 (see page 5)
illustrates some of the variances in activity
patterns for four different types of projects.

Since variations in the activities per-
formed can affect overall costs, schedules,
and productivity rates by significant
amounts, it is important to match activities
to the project being estimated. More than
100 percent differences in work effort have
been observed for projects of exactly the
same size due to variations in the activities
performed. In general, military projects
and systems software projects perform
more activities than management informa-
tion systems or Web applications of the
same size.

Feature 3: Estimating Staffing Levels
and Specialists
Although staffing, effort, costs, and
schedules are all important for the final
estimate, a typical place to start estimat-
ing is with staffing levels. There are sig-
nificant variations in staffing levels based
on team experience, application size,
reusable materials, and other factors.

One of the trickier aspects of esti-
mating the staffing for large applications
is the fact that sometimes as many as 35
different occupation groups might be
working on a large project at the same
time. A list of 20 common software occu-
pation groups observed on large software
systems is shown in Table 2.

Since each of these specialized occu-
pations may work for only part of a pro-
ject’s life cycle, and since each form of
specialization can have very different
salary and bonus packages, it is not a triv-
ial task to handle staffing estimates for
large software applications when multiple
specialists are utilized.

Feature 4: Estimating Software Work
Effort
The term work effort defines the amount of
human work associated with a project. The
amount of effort can be expressed in any
desired metric such as work hours, work
days, work weeks, work months, or work
years. Usually small projects of up to per-
haps 1,000 function points utilize hours
for expressing effort, but the larger proj-
ects in excess of 10,000 function points
normally utilize days, weeks, or months as
the unit of measure.

For example, in the United States the
nominal workweek is five days of eight
hours each, or 40 hours total. Yet the num-
ber of effective work hours per day is usu-
ally only about six due to coffee breaks,
staff meetings, etc. The number of work-
days per year will vary with vacations and
sick leave, but averages about 220 days per
year in the United States. However, in
Europe vacation periods are longer, while
in other countries such as Mexico and
Japan vacation periods are shorter than in
the United States.

This kind of knowledge can only be
determined by accurate measurements of
many real software projects. This explains
why software estimation vendors are often
involved in measurement studies, assess-
ments, and benchmark analysis. Only
empirical data derived from thousands of
software projects can yield enough infor-
mation to create accurate estimation algo-
rithms using realistic work patterns. For
discussions of how software effort varies
in response to a number of factors, refer to
Putnam and Myers [8] or Jones [9].

Feature 5: Estimating Software Costs
The fundamental equation for estimating
the cost of a software activity is simple in
concept, but very tricky in real life:

Effort x (Salary + Burden) = Cost

A basic problem is that software staff
compensation levels vary by about a ratio
of 3-to-1 in the United States and by more
than 10-to-1 when considering global

compensation levels for any given job cat-
egory. For example, here in the United
States there are significant ranges in aver-
age compensation by industry and also by
geographic region. Programmers in a large
bank in mid-town Manhattan or San
Francisco will average more than $80,000
per year, but programmers in a retail store
environment in the rural South might aver-
age less than $45,000 per year.

There are also major variations in the
burden rates or overhead structures that
companies apply in order to recover
expenses such as rent, mortgages, taxes,
benefits, and the like. The burden rates in
the United States can vary from less than
15 percent for small home-based enter-
prises to more than 300 percent for major
corporations. When the variance in basic
staff compensation is compounded with
the variance in burden rates, the overall
cost differences are notable indeed. For a
discussion of software cost variations,
refer to Jones [10].

Feature 6: Estimating Software
Schedules
Estimating software schedules has been a
troublesome topic because most large soft-
ware projects tend to run late. Close analy-
sis of reported schedule errors indicates
three root causes for missed schedules:
1) conservative or accurate schedule pro-
jections are arbitrarily overruled by clients
or senior executives, 2) creeping require-
ments are not handled proactively, and
3) early quality control is inadequate, and
the project runs late when testing begins.

Formal schedule estimation is an area
where cost estimation tools and project
management tools frequently overlap.
Often the cost estimation tool will handle
high-level scheduling of the whole project,
but the intricate calculations involving
dependencies, staff availability, and
resource leveling will be done by the proj-
ect management tool.

A basic equation for estimating the
schedule of any given development activi-
ty follows:

Effort/Staff = Time Period

Using this general equation, an activity that
requires eight person-months of effort
and has four people assigned to it can be
finished in two calendar months, i.e.:

8 Months/4 People = 2 Calendar Months

In real life, schedule estimating is one
of the most difficult parts of the soft-
ware estimation process. Many highly

Table 2: Common Software Occupation Groups
Common Software Occupation Groups

Involved in Large Applications
1. Architects (software/systems)
2. Configuration Control Specialists
3. Cost Estimation Specialists
4. Data Base Administration Specialists
5. Function Point Specialists (certified)
6. Globalization and Nationalization

Specialists
7. Graphical User Interface Specialists
8. Integration Specialists
9. Library Specialists (for project libraries)
10. Maintenance Specialists
11. Project Managers
12. Project Planning Specialists
13. Quality Assurance Specialists
14. Systems Analysis Specialists
15. Systems Support Specialists
16. Technical Translation Specialists
17. Technical Writing Specialists
18. Testing Specialists
19. Web Development Specialists
20. Web Page Design Specialists

“In real life,
schedule estimating
is one of the most

difficult parts of the
software estimation

process.”

Software Cost Estimation in 2002

June 2002 www.stsc.hill.af.mil 7

complex topics must be dealt with such as
the following:
• An activity’s dependencies upon previ-

ous activities.
• Overlapping or concurrent activities.
• The critical path through the sequence

of activities.
• Less than full-time staff availability.
• Number of shifts worked per day.
• Number of effective work hours per

shift.
• Paid or unpaid overtime applied to the

activity.
• Interruptions such as travel, meetings,

training, or illness.
• Number of time zones for projects in

multiple cities.
It is at the point of determining soft-

ware schedules when software cost estima-
tion tools and project management tools
come together. The normal mode of oper-
ation is that the software cost estimation
tool will handle sizing, activity selection,
effort estimation, cost estimation, and
approximate scheduling by phase or activi-
ty. Then the software cost estimation tool
will export its results to the project man-
agement tool for fine tuning, critical path
analysis, and adjusting the details of indi-
vidual work assignments.

Feature 7: Estimating Defect
Potentials
One reason software projects run late and
exceed their budgets may be that they
have so many bugs they cannot be
released to users. A basic fact of software
projects is that defect removal is likely to
take more time and cost more than any
other identifiable cost element.

The fact that software defect levels
affect software project costs and schedules
is why automated software cost estimation
tools often have very powerful and sophis-
ticated quality-estimation capabilities.

Quality estimates use two key metrics
derived from empirical observations on
hundreds of software projects: defect poten-
tials and defect removal efficiency. The defect
potential of a software project is the total
number of defects that are likely to be
encountered over the development cycle
during the first 90 days of usage. Defect
removal efficiency refers to the percent-
age of defects found and removed by the
developers before release to customers.

Based on studies published in the
author’s book Applied Software Measurement
[7], the average number of software
errors in the United States is about five
per function point (Table 3). Note that
software defects are found not only in
code, but also originate in all of the major
software deliverables in the approximate

quantities listed in Table 3.
These numbers represent the total

number of defects that are found and
measured from early software require-
ments throughout the remainder of the
software life cycle. However, knowledge
of possible defects is not the complete
story. It is also necessary to predict the
percentage of possible defects that will be
removed before software deployment.

Feature 8: Estimating Defect
Removal Efficiency
Many kinds of defect removal operations
are available for software projects. The
most common types include require-
ments reviews, design reviews, code
inspections, document editing, unit test,
function test, regression test, integration
test, stress or performance test, system
test, external Beta test, and customer
acceptance test. In addition, specialized
forms of defect removal may also occur
such as independent verification and vali-
dation, independent tests, audits, and
quality assurance reviews and testing.

In general, most forms of testing are
less than 30 percent efficient. That is,
each form of testing will find less than 30
percent of the errors that are present
when testing begins. Of course a
sequence of six test stages such as unit
test, function test, regression test, per-
formance test, system test, and external
Beta test might top 80 percent in cumula-
tive efficiency.

Formal design and code inspections
have the highest defect removal efficiency
levels observed. These two inspection
methods average more than 65 percent in
defect removal efficiency and have
topped 85 percent.

Before releasing applications to cus-
tomers, various reviews, inspections, and
testing steps utilized will remove many
but not all software defects. The current
U.S. average is a defect removal efficiency
of about 85 percent, based on studies car-

ried out among the author’s client compa-
nies and published in Software Assessments,
Benchmarks, and Best Practices [9], although
the top projects approach 99 percent.

The number and efficiency of defect
removal operations have major impacts
on schedules, costs, effort, quality, and
downstream maintenance. Estimating
quality and defect removal are so impor-
tant that a case can be made that accurate
software cost and schedule estimates are
not possible unless quality is part of the
estimate.

Feature 9: Adjusting Estimates in
Response to Technologies
One of the features that separates soft-
ware estimation tools from project man-
agement tools is the way estimation tools
deal with software engineering technolo-
gies. There are scores of software design
methods, hundreds of programming lan-
guages, and numerous forms of reviews,
inspections, and tests. There are also
many levels of experience and expertise
on the part of project teams.

Many software estimation tools have
built-in assumptions that cover techno-
logical topics like the following:
• Requirements gathering methods.
• Specification and design methods.
• Software reusability impacts.
• Programming language or languages

used.
• Software inspections.
• Software testing.

Software estimation tools can auto-
matically adjust schedule, staffing, and
cost results to match the patterns
observed with various technologies. For
additional information on such topics
refer to Putnam [11], Roetzheim and
Beasley [12], and Jones [9].

Feature 10: Estimating Maintenance
Costs over Time
In 2001, more than 50 percent of the
global software population was engaged
in modifying existing applications rather
than writing new applications.

Although defect repairs and enhance-

Table 3: U.S. Averages in Terms of Defects
per Function Point (Circa 2001)

U.S. Averages:
Defects per Function Point

Defects per
Defect Origins Function Point
Requirements 1.00
Design 1.25
Coding 1.75
Document 0.60
Bad Fixes 0.40

Total 5.00

“One reason software
projects run late
and exceed their

budgets may be that
they have so many
bugs they cannot be
released to users.”

Software Estimation

8 CROSSTALK The Journal of Defense Software Engineering June 2002

ments are different in many respects, they
have one common feature. They both
involve modifying an existing application
rather than starting from scratch with a
new application.

Several metrics are used for mainte-
nance estimation. Two of the more com-
mon metrics for maintenance and enhance-
ment estimation include 1) defects repaired
per time interval and 2) assignment
scopes or quantities of software assigned
to one worker.

The defects repaired per time interval met-
ric originated within IBM circa 1960. It
was discovered that for fixing customer-
reported bugs or defects, average values
were about eight bugs or defects repaired
per staff month. There are reported vari-
ances of about 2 to 1 around this average.

The term assignment scope refers to
the amount of software one maintenance
programmer can keep operational in the
normal course of a year, assuming routine
defect repairs and minor updates.
Assignment scopes are usually expressed
in terms of function points and the
observed range is from less than 300 func-
tion points to more than 5,000 function
points with an average of around 1,000
function points.

Future Trends in Software
Estimation
Software technologies are evolving rapid-
ly, and software cost estimation tools need
constant modifications to stay current.
Some future estimating capabilities can be
hypothesized from the direction of the
overall software industry.

As corporations move toward Internet
business models, it is apparent that soft-
ware cost estimation tools need expanded
support for these applications. While the
software portions of Internet business
applications can be estimated with current
tools, the effort devoted to content is out-
side the scope of standard estimates. The
word content refers to the images and
data that are placed in Web sites.

As data warehouses, data marts, and
knowledge repositories extend the capa-
bilities of database technology, it is appar-
ent that database cost estimation lags soft-
ware cost estimation. As this article is
written, there is no data-point metric for
ascertaining the volumes of data that will
reside in a database or data warehouse.
Thus, there are no effective estimation
methods for the costs of constructing
databases or data warehouses or for eval-
uating data quality.

For companies that are adopting
enterprise resource planning (ERP), the

time and costs of deployment and tuning
are multiyear projects that may involve
scores of consultants and hundreds of
technical workers. Here too, expanded
estimating capabilities are desirable since
ERP deployment is outside the scope of
many current software cost estimation
tools.

Other features that would be useful in
the future include value estimation, litiga-
tion estimation, and enhanced support
for reusable artifacts. Refer to Jones [3],
Boehm [2], and Stutzke [13] for addition-
al thoughts on future estimation capabil-
ities.

Conclusions
Software cost estimation is simple in con-
cept, but difficult and complex in reality.
The difficulty and complexity required for
successful estimates exceed the capabili-
ties of most software project managers.
As a result, manual estimates are not suf-
ficient for large applications above rough-
ly 1,000 function points in size.

Commercial software cost estimation
tools can often outperform manual
human estimates in terms of accuracy
and always in terms of speed and cost
effectiveness. However, no method of
estimation is totally error free. The cur-
rent best practice for software cost estima-
tion is to use a combination of software
cost estimation tools coupled with soft-
ware project management tools, under
the careful guidance of experienced soft-
ware project managers and estimation
specialists.

References
1. Boehm, Barry. Software Engineering

Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

2. Boehm, Barry, et al. “Future Trends,
Implications in Software Cost
Estimation Models.” CrossTalk

Apr. 2000: 4-8.
3. Jones, Capers. “Sizing Up Software.”

Scientific American Magazine Dec.
1998: 74-79.

4. Kan, Stephen H. Metrics and Models
in Software Quality Engineering.
Reading, Mass.: Addison-Wesley, 1995.

5. International Function Point Users
Group. Counting Practices Manual.
Release 4.1. Westerville, Ohio: IFPUG,
May 1999.

6. Kemerer, C. F. “Reliability of Function
Point Measurement – A Field Exper-
iment.” Communications of the ACM
36 (1993): 85-97.

7. Jones, Capers. Applied Software
Measurement. 2nd ed. New York:
McGraw-Hill, 1996.

8. Putnam, Lawrence H., and Ware
Myers. Industrial Strength Software –
Effective Management Using Meas-
urement. Los Alamitos, Calif.: IEEE
Press, 1997.

9. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, Mass.: Addison Wesley Long-
man, 2000.

10. Jones, Capers. Estimating Software
Costs. New York: McGraw-Hill, 1998.

11. Putnam, Lawrence H. Measures for
Excellence – Reliable Software On
Time, Within Budget. Englewood
Cliffs, N.J.: Yourdon Press - Prentice
Hall, 1992.

12. Roetzheim, William H., and Reyna A.
Beasley. Best Practices in Software
Cost and Schedule Estimation. Saddle
River, N.J.: Prentice Hall PTR, 1998.

13. Stutzke, Richard D. “Software
Estimation: Challenges and Research.”
CrossTalk Apr. 2000: 9-12.

About the Author

Capers Jones is chief
scientist emeritus of
Artemis Management
Systems and Software
Productivity Research
Inc., Burlington, Mass.

Jones is an international consultant on
software management topics, a speaker, a
seminar leader, and an author. He is also
well known for his company’s research
programs into the following critical soft-
ware issues: Software Quality: Survey of
the State of the Art; Software Process
Improvement: Survey of the State of the
Art; Software Project Management:
Survey of the State of the Art. Formerly,
Jones was assistant director of pro-
gramming technology at the ITT
Programming Technology Center in
Stratford, Conn. Before that he was at
IBM for 12 years. He received the IBM
General Product Division’s outstanding
contribution award for his work in soft-
ware quality and productivity improve-
ment methods.

Software Productivity
Research Inc.
6 Lincoln Knoll Drive
Burlington, MA 01803
Phone: (781) 273-0140
Fax: (781) 273-5176
E-mail: cjones@spr.com

